Дальномерный способ определения местоположения и составляющих вектора скорости объектов по радиосигналам космических аппаратов спутниковых радионавигационных систем. Дальномерный метод Методы определения местоположения

По совокупности измеряемых геометрических параметров системы определения местоположения источников ЭМИ подразделяются :

· на триангуляционные (угломерные, пеленгационные);

· разностно-дальномерные;

· угломерно-разностно-дальномерные.

Вид и количество измеряемых геометрических величин определяют пространственную структуру системы определения местоположения источника ЭМИ: количество пространственно разнесенных приемных пунктов сигналов источника ЭМИ и геометрию их расположения.

Триангуляционный (угломерный, пеленгационный) метод основан на определении направлений (пеленгов) на источник ЭМИ в двух точках пространства с помощью радиопеленгаторов, разнесенных на базу d (рис. 18,а).

Рис. 18. Пояснение триангуляционного метода определения местоположения источника ЭМИ на плоскости (а) и в пространстве (б)

Если источник ЭМИ располагается в горизонтальной или вертикальной плоскости, то для определения его местоположения достаточно измерить два угла азимута ц1 и ц2 (или два угла места). Местоположение источника ЭМИ определяется точкой пересечения прямых О1И и О2И - двух линий положения.

Для определения местоположения источника в пространстве измеряют углы азимута ц а1 и ц а2 в двух разнесенных точках О1 и О2 и угол места цм1 в одной из этих точек или, наоборот, углы места цм1 и цм2 в двух точках приема и угол азимута ц а1 в одной из них (рис. 18,б).

Расчетным путем может быть определена дальность от одной из приемных точек до источника по измеренным углам и известной величине базы d:

отсюда приравняем два выражения для h:

Таким образом, дальность до источника

Триангуляционный метод прост в технической реализации. Поэтому широко применяется в системах радио- и РТР, в пассивных радиолокационных разнесенных системах при обнаружении и определении координат излучающих объектов.

Существенным недостатком триангуляционного метода является то, что при увеличении количества источников ЭМИ, находящихся в зоне действия радиопеленгаторов, могут происходить ложные обнаружения несуществующих источников (рис. 19). Как видно из рис.19, наряду с определением координат трех истинных источников И1, И2 и И3 обнаруживаются и шесть ложных источников ЛИ1, …, ЛИ6. Исключить ложные обнаружения при применении триангуляционного метода можно путем получения избыточной информации о пеленгуемых источниках - увеличением количества разнесенных радиопеленгаторов или опознаванием принадлежности получаемой информации к определенному источнику. Опознавание может быть проведено при сравнении сигналов, принимаемых радиопеленгаторами, по несущей частоте, периоду следования и длительности импульсов

Рис. 19.

Дополнительную информацию об источниках получают и за счет взаимно корреляционной обработки сигналов, принимаемых в разнесенных точках пространства.

Устранение ложных обнаружений при применении триангуляционного метода возможно также за счет получения данных о разности дальностей от источника излучения до пунктов приема (пунктов расположения радиопеленгаторов). Если точка пересечения линий пеленгов не лежит на гиперболе, соответствующей разности дальностей, то она является ложной.

Разностно-дальномерный метод определения местоположения основан на измерении с помощью РЭС разности дальностей от источника ЭМИ до пунктов приема, разнесенных в пространстве на расстояние d. Местоположение источника на плоскости находится как точка пересечения двух гипербол (две разности дальностей, измеренные в трех приемных пунктах), принадлежащих различным базам А1А2, A2A3 (рис. 20). Фокусы гипербол совпадают с точками расположения пунктов приема.

Рис. 20.

Пространственное положение источников ЭМИ определяется по трем разностям дальностей, измеряемым в трех-четырех приемных пунктах. Местоположение источника - точка пересечения трех гиперболоидов вращения.

Угломерно-разностно-дальномерный метод определения местоположения предполагает измерение с помощью РЭС разности дальностей от источника ЭМИ до двух разнесенных приемных пунктов и измерение направления на источник в одном из этих пунктов.

Для определения координат источника на плоскости достаточно измерить азимут ц и разность дальностей АД от источника до точек приема. Местоположение источника определяется точкой пересечения гиперболы и прямой.

Для определения положения источника в пространстве необходимо дополнительно измерить в одной из точек приема угол места источника ЭМИ. Местоположение источника находится как точка пересечения двух плоскостей и поверхности гиперболоида.

Ошибки определения местоположения источника ЭМИ на плоскости зависят от ошибок измерения двух геометрических величин:

· двух пеленгов в триангуляционных системах;

· двух разностей дальностей в разностно-дальномерных системах;

· одного пеленга и одной разности дальностей в угломерно-разностно-дальномерных системах.

При центрированном гауссовском законе распределения ошибок определения линий положения среднеквадратическое значение ошибки определения местоположения источника:

где - дисперсии ошибок определения линий положения; r - коэффициент взаимной корреляции случайных ошибок определения линий положения Л1 и Л2; г - угол пересечения линий положения.

При независимых ошибках определения линий положения r = 0.

При триангуляционном методе определения местоположения источника

Среднеквадратическая ошибка определения местоположения

При применении идентичных радиопеленгаторов

Наибольшая точность будет при пересечении линий положения под прямым углом (г = 90°).

При оценке ошибок определения местоположения источника в пространстве необходимо рассматривать ошибки измерения трех геометрических величин. Ошибка определения местоположения зависит в этом случае от взаимной пространственной ориентации поверхностей положения. Наивысшая точность определения положения будет при пересечении нормалей к поверхностям положения под прямыми углами.

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения координат местоположения источников радиоизлучения (ИРИ). Достигаемый технический результат - снижение аппаратных затрат. Предлагаемый способ основан на приеме сигналов ИРИ антеннами, измерении разности времени приема сигнала от ИРИ в нескольких точках пространства сканирующими радиоприемными устройствами, преобразованных в систему уравнений, а также основан на использовании двух одинаковых, стационарных радиоконтрольных постов (РП), один из которых принимают за ведущий, соединяя с другим линией связи, при этом калибруют измеритель величины запаздывания прихода сигналов на (РП), используя эталонные радиоэлектронные средства (РЭС) с известными параметрами сигналов и координатами местоположения, затем на РП осуществляют квазисинхронное сканирование и измерение уровней сигналов на заданных фиксированных частотах настройки и величину запаздывания прихода сигналов ИРИ. Информацию с ведомого РП передают на ведущий, где вычисляют отношение уровней и разность запаздывания прихода сигналов ИРИ с учетом результатов калибровки измерителей, а также составляют два уравнения положения ИРИ, каждое из которых описывает окружность с радиусом, равным расстоянию от РП до ИРИ. Расстояния при этом определяют через отношение уровней сигналов и разность времени приема сигнала, измеренных на РП с использованием только одной пары антенн с известными азимутом оси главного лепестка и диаграммой направленности, главный лепесток каждой из которых расположен в разных полуплоскостях относительно линии базы, а координаты ИРИ определяют численным методом решения составленных уравнений, принимая за истинные лишь координаты, относящиеся в той полуплоскости относительно линии базы, в которой находится главный лепесток антенны с наибольшим уровнем принятого сигнала. Устройство, реализующее способ, содержит два одинаковых РП, один из которых является ведущим, и на каждом посту содержит направленные антенны, измерительный сканирующий радиоприеник, измеритель величины запаздывания прихода сигналов, компьютер и устройство связи, определенным образом соединенные между собой. 2 н.п. ф-лы, 2 ил.

Рисунки к патенту РФ 2510038

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения координат местоположения источников радиоизлучения (ИРИ), сведения о которых отсутствуют в базе данных (например, государственной радиочастотной службы или государственной службы надзора за связью). Изобретение может быть использовано при поиске местоположения несанкционированных средств связи.

Известны способы определения координат ПРИ, в которых используются пассивные пеленгаторы в количестве не менее трех, центр тяжести области пересечения выявленных азимутов которых на фронт прихода волны принимается за оценку местоположения. Основными принципами работы таких пеленгаторов являются амплитудные, фазовые и интерферометрические . Широко применяемым является амплитудный способ пеленгования, при котором используется антенная система, имеющая, диаграмму направленности с ярко выраженным максимумом главного лепестка и минимальными задним и боковыми лепестками. К таким антенным системам относятся, например, логопериодические или, антенны, имеющие кардиоидную характеристику и др. При амплитудном способе механическим вращением добиваются положения антенны, при котором выходной сигнал имеет максимальную величину. Такое направление принимают за направление на ИРИ. К недостаткам большинства пеленгаторов следует отнести высокую степень сложности антенных систем, коммутационных устройств и наличие многоканальных радиоприемников, а также необходимость в быстродействующих системах обработки информации.

Наличие в федеральных округах государственной радиочастотной службы взаимосвязанных через центральный пункт разветвленной сети радиоконтрольных постов, оборудованных средствами приема радиосигналов, измерения и обработки их параметров, позволяет дополнить их функции и задачами определения координат местоположения тех ИРИ, сведения о которых отсутствуют в базе данных, не прибегая к использованию сложных и дорогостоящих пеленгаторов.

Известен способ , в котором для определения координат местоположения ИРИ используют N, не менее четырех, стационарных радиоконтрольных постов, расположенных не на одной прямой, один из которых принимают за базовый, соединяя с остальными N-1 постами линиями связи, на всех постах осуществляют квазисинхронное сканирование по заданным фиксированным частотам настройки, усредняют измеренные значения уровней сигналов на каждой из сканируемых частот, а затем на базовом посту для каждого из сочетаний C 4 N (сочетаний из N по 4) на основании обратно пропорциональной зависимости отношений расстояний от поста до источника радиоизлучения и соответствующих им разностей уровней сигналов, выраженных в дБ, составляют три уравнения, каждое из которых описывает окружность равных отношений, по параметрам двух любых пар которых и определяют текущее среднее значение широты и долготы местоположения источника радиоизлучения. Недостатком этого способа является большое количество стационарных постов радиоконтроля.

Известны способы и устройства пеленгования (4, 5), которые могут быть использованы для целей определения координат.

Способ (4) основан на приеме сигналов тремя антеннами, образующими две пары измерительных баз, измерении разностей времени прихода сигналов ИРИ и детерминированных вычислений искомых координат.

К недостаткам способа следует отнести:

1) Большое количество антенн.

2) Способ не ориентирован на использование радиоконтрольных постов.

3) Измерительные базы для вычисления разности времен прихода сигналов ПРИ парами антенн существенно ограничивают разнос этих антенн, не говоря о нецелесообразности и большой технической сложности реализации способа.

Разнесенный разностно-дальномерный пеленгатор (5), состоящий из двух периферийных пунктов, центрального и системы единого времени, преследует цель разгрузить канал связи между пунктами. Периферийные пункты предназначены для приема, хранения, обработки сигналов и передачи фрагментов сигналов на ЦП, на котором вычисляется разность времени прихода сигналов. В системе единого времени применяется хронизатор, представляющий собой привязанный к шкале единого времени хранитель шкалы текущего времени (часы), предназначенный для привязки записываемых в ЗУ значений уровня сигнала к значению времени приема.

Данному пеленгатору свойственны следующие недостатки:

1) Не адаптирован к радиоконтрольным пунктам, используемым в филиалах федеральных округов государственной радиочастотной службы или государственной службы надзора за связью.

2) Большое количество специализированных пеленгационных (но не радиоконтрольных) постов.

3) Необоснованное и не раскрытое (хотя бы до функциональной схемы) применение системы единого времени на ЦП и хронизаторов на ПП, синхронизированных с системой единого времени.

4) Необходимость в наличии радиоканалов с большой пропускной способностью (до 625 Мбод) для передачи даже фрагментов сигналов с ПП1 и ПП2 на ЦП.

5) Для организации радиоканала необходимы радиопередающие устройства и получение разрешения на их работу в определенных условиях эксплуатации.

Известен разностно-дальномерный способ определения координат источника радиоизлучения и реализующее его устройство (6).

Способ, основанный на приеме сигналов ИРИ четырьмя антеннами, образующими три независимые измерительные базы, в разнесенных точках A, B, C, D таким образом, что объем фигуры, образованный из этих точек, больше нуля (V A,B,C,D >0). Сигнал одновременно принимается на все антенны, измеряют три независимые разности времени t AC , t BC , t DC приема сигнала парами антенн, образующих измерительные антенные базы (АС), (ВС) и (DC). По измеренным разностям времен вычисляют разности дальностей от ИРИ до пар точек (А, С), (В, С), (D, C), для k-й тройки антенн, расположенных в точках А, В, С при k=1, B, C, D при k=2, D, C, A при k=3, вычисляют с помощью измеренных разностей дальностей значения угла k , характеризующие угловое положение плоскости положения ИРИ k , k=1, 2, 3 относительно соответствующей измерительной базы, и координаты точки F k принадлежащей k-й плоскости положения ИРИ, вычисляют искомые координаты ИРИ как координаты точки пересечения трех плоскостей положения ИРИ k , k=1, 2, 3 каждая из которых характеризуется координатами точек расположения k-й тройки антенн и вычисленными значениями угла k и координатами точки F k , отображают результаты вычисления координат ИРИ в заданном формате.

Этот способ и устройство, его реализующее, ближе к заявляемому, но также обладает рядом существенных недостатков:

1) Сложность практической реализации способа в связи с отсутствием возможности измерении разностей времен приема сигнала ИРИ только антеннами (измерительные радиоприемники в блок-схеме отсутствуют).

2) Необходимость сведения сигналов ИРИ с разнесенных на оптимальное расстояние до 0,6-0,7 R ЭМД антенн согласно (2) в одну точку, что практически реализовывать нецелесообразно.

3) Обеспечить измерение разности времени приема сигнала ИРИ на конкретных заданных частотах непосредственно с антенн (без использования радиоприемников, которые на блок-схеме не отображены) весьма сложно.

4) Для измерения разности времени приема сигнала непосредственно с антенн используются двухвходовые измерители.

5) Сложность технической реализации, обусловленная большим количеством различных вычислителей.

6) Неопределенность в построении поверхности положения в виде плоскости, перпендикулярной плоскости расположения антенн, так как антенны в точках A, B, C, D не располагаются в одной плоскости, о чем свидетельствует условие V A,B,C,D >0 в формуле изобретении.

Наиболее близким к заявляемому является дальномерно-разностно-дальномерный способ определения координат источника радиоизлучения и реализующее его устройство (7), принятый в качестве прототипа.

Способ основан на приеме сигнала тремя антеннами, измерении значений двух разностей времен приема сигнала ИРИ антеннами, измерении двух значений плотности потока мощности сигнала ИРИ, последующей обработке результатов измерений с целью вычисления координат точки, через которую проходит линия положения ИРИ.

Этот способ предполагает выполнение следующих операций:

Располагают три антенны в вершинах треугольника АВС;

Принимают сигнал на все три антенны;

Измеряют две разности времен t AC и t BC приема сигнала ИРИ антеннами;

Измеряют плотности потока мощности P 1 и Р 2 сигнала в точках размещения антенн 1 и 2;

Вычисляют значения разностей дальностей от ИРИ до пар антенн с использованием выражений r AC =C t AC , r BC =C t BC , r AB = r AC - r BC , где С - скорость распространения электромагнитной волны;

Вычисляют координаты по полученной формуле.

В соответствии с (7) в состав устройства, реализующего способ, входит:

Три антенны;

Два измерителя разности времен;

Два измерителя плотности потока мощности;

Вычислительный блок;

Блок индикации.

Прототипу свойственны следующие недостатки:

1) Практическая сложность осуществления способа в связи с отсутствием возможности измерении разностей времен приема сигнала ИРИ только антеннами (измерительные радиоприемники в блок-схеме отсутствуют).

2) Необходимость сведения сигналов ИРИ с разнесенных на несколько километров антенн в одну точку для измерения двухвходовыми измерителями, что является существенной и не решенной авторами патента проблемой.

3) Не адаптирован к оборудованию радиоконтрольных постов (избыточны два измерителя разности времен, два измерителя плотности потока мощности, вычислительный блок, блок индикации), имеющихся в филиалах федеральных округов радиочастотной службы РФ, а поэтому не может быть там использован.

4) Применяемые приемные антенны могут быть только изотропными, так как в формулах вычисления координат отсутствуют параметры диаграмм их направленности.

Целью настоящего изобретения является разработка способа определения координат местоположения ИРИ двумя радиоконтрольными постами, что позволит применить такой способ практически во всех филиалах федеральных округов Радиочастотной службы Российской Федерации.

Эта цель достигается с помощью признаков, указанных в формуле изобретения, общих с прототипом: способ определения координат местоположения источников радиоизлучения, основанный на приеме сигналов ИРИ антеннами, измерении уровней и разности времени приема сигнала от ИРИ в нескольких точках пространства сканирующими радиоприемными устройствами и преобразованных в систему уравнений, и отличительных признаков: для определения координат местоположения ИРИ используют два одинаковых стационарных радиоконтрольных поста, один из которых принимают за ведущий, соединяя с другим линией связи, калибруют измеритель величины запаздывания прихода сигналов на посты, используя эталонные РЭС с известными параметрами сигналов и координатами местоположения, затем на постах осуществляют квазисинхронное сканирование и измерение уровней сигналов на заданных фиксированных частотах настройки и величину запаздывания прихода сигналов ПРИ, а затем передачу их на базовый пост, где вычисляют отношение уровней и разность запаздывания прихода сигналов ИРИ с учетом результатов калибровки измерителей, а также составляют два уравнения положения ИРИ, каждое из которых описывает окружность с радиусом равным расстоянию от поста до ИРИ, причем эти расстояния определяют через отношение уровней сигналов и разность времени приема сигнала, измеренных на постах с использованием только одной пары антенн с известными азимутом оси главного лепестка и диаграммой направленности, а координаты ИРИ определяют численным методом решения составленных уравнений. Заявляемый способ поясняется чертежами, на которых показаны:

На фиг.1 - размещение двух постов радиоконтроля и положение ИРИ, Е - истинное положение, Еф - фиктивное; a , b - углы положения оси главного лепестка ДНА; АВ - линия базы; АЕ, BE - линии азимутов a и b на истинное положение ИРИ; АЕф, ВЕф - линии азимутов аф и bф на фиктивный ИРИ;

На фиг.2 - блок-схема реализации предлагаемого способа,

Предлагаемый способ предполагает выполнение следующих операций:

1) Калибруют измеритель величины запаздывания прихода сигналов (ИВЗ) на посты, используя массив эталонных РЭС с известными параметрами сигналов и координатами местоположения. Каждая эталонная РЭС должна находиться в зоне ЭМД обоих постов. Их количество и распределение в зоне ЭМД должно быть достаточным для обеспечения заданной точности калибровки как по расстоянию, так и азимуту от постов.

2) На каждом посту измеряют уровни сигнала с помощью радиоприемника и величины запаздывания прихода сигналов ИРИ с помощью соответствующего измерителя, используя антенны поста с известной диаграммой направленности, перестраивая при этом приемник на заданные фиксированные частоты. Процедуру по измерению величин запаздывания прихода сигналов ИРИ выполняют аналогично п.1. Результаты заносятся в банк данных своего компьютера.

3) Пересылают по каналу связи устройства связи информацию из ведомого компьютера на ведущий.

4) Вычисляют разность величин запаздывания прихода сигналов на антенны постов как от эталонных РЭС, так и от ИРИ с учетом результатов по п.1, а также вычисляют отношение уровней сигналов от ИРИ, измеренных радиоприемниками постов.

5) Составляют систему двух уравнений, определяющих положение ИРИ, и решают ее численным методом, используя данные пункта 4.

Уравнения положения при этом будут иметь вид окружностей

где: r a , r b - расстояния от постов до искомого ИРИ, а 8- их разность (рис.1).

Квадраты отношений радиусов запишем через измеренные уровни сигналов как

Отношение квадратов расстояний, определяемое через разность уровней сигналов, измеренных на постах радиоконтроля А и В и выраженных в дБ, позволяет описать линию положения ПРИ, исключив при этом зависимость этой линии положения от мощности искомого источника радиоизлучения. При этом из (3), на основании вычисленной разности расстояний, определяются квадраты расстояний в виде:

и .

Так как окружности пересекаются в двух точках, симметричных относительно линии базы (см. фиг.1), то возникает неоднозначность координат ИРИ. Для снятия возникающей неоднозначности можно выполнить повторные измерения с использованием направленной (с известной ДНА), например, логопериодической или кардиоидной поворотной антеннами. Но этот вариант связан с большими временными затратами и сложностью автоматизации такого решения. В заявляемом способе определение координат ИРИ с одновременным устранением неоднозначности осуществляют посредством измерения уровней сигналов непосредственно на направленные антенны. При этом направленные антенны не поворачивают в направлении максимума излучаемого сигнала, но положение оси главного ее лепестка на обоих постах должно быть известно, а лепестки ориентированы примерно в противоположных направлениях относительно базы. Такое положение осей главных лепестков антенн показано на фиг.1. Зависимость ЭДС на выходе антенны Е() связана с напряженностью поля вблизи ее и углом , определяющим положение оси главного лепестка ДНА относительно азимута на ПРИ, может быть представлена как Е()=Ем (), где Ем - максимальная ЭДС, соответствующая направлению оси главного лепестка на источник, () - функция определяющая диаграмму антенны. Теперь отношение уровней сигналов для направленных антенн n ( a , b) можно представить через отношение уровней, получаемых от ненаправленных антенн n ab как, где

и - функция отношений ДНА.

Отсюда n ab =n( a , b)/ ( a , b) и квадраты радиусов (4) системы (1) будут представлены в виде:

Для решения системы уравнений (1) и (2), с учетом (5) и (6), необходимо определить углы a , b и знать (). Из фиг.1 они определяются как a = a - a , b = b - b , ,

где: аф = аф - a , bф = bф - b , a < /2, то ИРИ находится во второй полуплоскости (ниже линии базы). При априорно снятой неопределенности расположения ИРИ относительно линии базы (например, при выполнении операции поиска ИРИ силовыми структурами) применяют ненаправленную (например, штыревую или биконическую антенны) и вычисление координат ведут по формулам (1), (2) с учетом (3) и (4).

В состав заявляемого устройства, реализующего заявляемый способ, входят два одинаковых радиоконтрольных поста - РКП А и РКП Б, содержащие:

1. Антенны 1, 6;

2. Радиоприемники (РП) 2, 7;

3. Измерители величин запаздывания сигналов (ИВЗ) 3, 8;

4. Компьютеры 4, 9;

5. Устройства связи 5, 10.

Один из постов (для примера, пусть это пост РКП А) является ведущим. Выходы антенн 1, 6 подключены на входы сканирующих радиоприемников 2, 7, управляющие компьютеры 4, 9 соединены двунаправленными связями с устройством связи 5, 10, предназначенными для передачи информации, сканирующими приемниками 2, 7 и измерителями величины запаздывания прихода сигналов 3, 8, вход каждого из которых соединен с выходом соответствующего сканирующего приемника. Измеренные приемниками сигналы ИРИ поступают по двунаправленной связи в компьютер соответствующего поста. В блоках 3, 8 осуществляется измерение величины запаздывания прихода сигналов как эталонных РЭС для создания файла калибровки, используемого при расчете координат, так и сигналов ИРИ и передача измеренных величин по запросу компьютера в его базу данных. Под управлением компьютера ведущего поста все сведения с ведомого поста передаются по каналу связи устройства связи 5, 10 в компьютер ведущего поста. Там производится расчет координат по уравнениям положения ИРИ с учетом диаграмм направленности антенн и калибровочных файлов. Вычисления координат проводятся численным методом последовательных приближений. Таким образом, предложенный способ позволяет определять координаты ИРИ в отличие от прототипа:

1) лишь двумя стационарными постами радиоконтроля;.

2) прием сигнала ИРИ осуществляется только на две антенны;

3) используются направленные антенны с выраженными максимумами диаграммы направленности, а не с круговой диаграммой направленности;

4) измерение величин запаздывания прихода сигналов на антенны постов осуществляется в месте размещения антенн одновходовым измерителем, используя при этом не сигналы с выходов антенн непосредстенно, а используя усиленные и отфильтрованные сигналы с выходов радиоприемников;

5) вычисление разности измеренных величин запаздывания прихода сигнала осуществляется не двухвходовым измерителем, соединенным с выходом разнесенных антенна, а на одном компьютере ведущего поста с использованием при этом полученных путем измерения калибровочных файлов;

6) главный лепесток каждой из антенн располагают в разных полуплоскостях относительно линии базы. принимая за истинные лишь координаты, относящиеся к той полуплоскости относительно линии базы, в которой находится главный лепесток антенны с наибольшим уровнем принятого сигнала.

7) вычисление координат местоположения осуществляется численным методом;

8) при априорно снятой неопределенности расположения ИРИ относительно линии базы применяют ненаправленную (например, штыревую или биконическую антенны) и вычисление координат ведут по формулам (1), (2) с учетом (3) и (4). Это упрощает реализацию устройства по предлагаемому способу

Таких особенностей не выявлено ни в аналогах, ни в прототипе и свидетельствует о наличии в предлагаемом изобретении признаков новизны и соответствующего уровня изобретательности.

Литература.

1. Корнеев И.В., Ленцман В.Л. и др. Теория и практика государственного регулирования использования радиочастот и РЭС гражданского применения.

Сборник материалов курсов повышения квалификации специалистов радиочастотных центров федеральных округов. Книга 2. - СПб.: СПбГУТ. 2003.

2. Липатников В.А., Соломатин А.И., Терентьев А.В. Радиопеленгация. Теория и практика. Спб. ВАС, 2006 г. - 356 с.

3. Способ определения координат местоположения источников радиоизлучения. Заявка № 2009138071, опубл. 20.04.2011 г. Б.И. № 11. Авторы: Логинов Ю.И., Екимов О.Б., Рудаков Р.Н.

4. Разностно-дальномерный способ пеленгования источника радиоизлучения. Патент РФ № 2325666 С2. Авторы: Сайбель А.Г., Сидоров П.А.

5. Разнесенный разностно-дальномерный пеленгатор. Патент РФ № 2382378, С1. Авторы: Ивасенко А.В., Сайбель А.Г., Хохлов П.Ю.

6. Разностно-дальномерный способ определения координат источника радиоизлучения и реализующее его устройство. Патент РФ № 2309420. Авторы: Сайбель А.Г., Гришин П.С.

7. Дальномерно-разностно-дальномерный способ определения координат источника радиоизлучения и реализующее его устройство. Патент РФ № 2363010,С2, опубл. 27.10.2007 г. Авторы: Сайбель А.Г., Вайгель К.И

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ определения координат местоположения источников радиоизлучения (ИРИ), основанный на измерении уровней и разности времени прихода сигнала от ИРИ на разнесенные антенны сканирующими радиоприемными устройствами и преобразованных в систему уравнений, отличающийся тем, что используют два стационарных радиоконтрольных поста, один из которых принимают за ведущий, соединяя с другим линией связи, калибруют измеритель величины запаздывания прихода сигналов на посты, используя эталонные радиоэлектронные средства с известными параметрами сигналов и координатами местоположения, на постах осуществляют квазисинхронное сканирование для выявления ИРИ, а затем выполняяют измерение уровней сигналов на заданных фиксированных частотах настройки и величин запаздывания прихода сигналов ИРИ, передачу их на ведущий пост, где вычисляют отношение уровней и разность запаздывания прихода сигналов ИРИ с использованием результатов калибровки измерителей, а также составляют два уравнения, каждое из которых описывает окружность с радиусом, равным расстоянию от поста до ИРИ, причем эти расстояния определяют через отношение уровней сигналов и разность величин запаздывания прихода сигнала, измеренных на постах с использованием только одной пары антенн с известными азимутом осей главного лепестка и диаграммами направленности, главный лепесток каждой из которых расположен в разных полуплоскостях относительно линии базы, а координаты ИРИ определяют численным методом решения составленных уравнений, принимая за истинные лишь координаты, относящиеся к той полуплоскости относительно линии базы, в которой находится главный лепесток антенны с наибольшим уровнем принятого сигнала.

2. Устройство для определения координат местоположения источников радиоизлучения, содержащее, соединенные двунаправленными линиями связи, посты, включающие приемные антенны, сканирующие радиоприемники, управляемые компьютером, отличающееся тем, что содержит два одинаковых радиоконтрольных поста, один из которых является ведущим, и на каждом посту измеритель величины запаздывания прихода сигналов, причем выходы антенн подключены на входы сканирующих радиоприемников, управляющий компьютер соединен двунаправленными связями с устройством связи, сканирующим приемником и измерителем величины запаздывания прихода сигналов, вход которого соединен с выходом сканирующего приемника.

Радиотехнические методы внешнетраекторных измерений

Аппаратура внешнетраекторных измерений, основанная на радиотехническом принципе, по сравнению с оптической обладает большей дальностью слежения и более универсальна. Она позволяет определять не только угловые координаты ЛА, но и дальность до объекта, его скорость, направляющие косинусы линии дальности и т.д.

Измерение дальности в радиотехнических системах сводится к определению времени задержки t D прихода излучаемых или отраженных радиосигналов, которые пропорциональны дальности

D=ct D ,

где с =3×10 8 м/с - скорость распространения радиоволн.

В зависимости от вида используемого сигнала определение t D может производиться измерением фазового, частотного или непосредственно временного сдвига, относительно опорного сигнала. Наибольшее практическое применение нашли импульсный (временной) и фазовой методы. В каждом из них измерение дальности может осуществляться как беззапросным , так и запросным способом. В первом случае дальность D=ct D , во втором - D=0,5ct D .

При беззапросном импульсном методе на борту ЛА и на Земле устанавливаются высокоточные хронизаторы х 1 и х 2 , синхронизируемые перед запуском (Рис. 9.5). В соответствии с импульсами u 1 хронизатора х 1 бортовой передатчик П излучает импульсные сигналы с периодом Т . Наземное приемное устройство П р принимает их через t D =D/c . Интервал t D между импульсами наземного хронизатора u 2 и импульсами u 1 на выходе приемника соответствует измеряемой дальности.

При запросном импульсном методе сигнал посылается наземным передатчиком, принимается бортовым приемником и ретранслируется обратно.

Рис. 9.5. Принцип измерения дальности импульсным беззапросным методом.

Точность этих методов повышается с увеличением частоты импульсов.

Фазовый метод измерения дальности заключается в том, что запаздывание сигнала определяется по фазовому сдвигу между запросным и ответным сигналом (Рис. 9.6).

Рис. 9.6. Фазовый метод измерения дальности

Наземный передатчик излучает колебания:

u 1 =A 1 sin(w 0 t+j 0)=A 1 sinj 1 ,

где А 1 - амплитуда,

w 0 - круговая частота,

j 0 - начальная фаза,

j 1 - фаза колебаний сигнала.

Бортовая аппаратура ретранслирует сигнал u 1 , а наземный приемник принимает сигнал

u 2 =A 2 sin=A 2 sinj 2 ,

где j А - фазовый сдвиг, обусловленный прохождением сигнала в аппаратуре, определяемый расчетным или экспериментальным путем.

Изменение фазы колебаний сигнала u 2 относительно u 1 определяется отношением:

j D =j 2 -j 1 =w 0 t D =LpD/(T 0 c),

откуда дальность

где l 0 - длина волны.

При измерении угловых параметров движения ЛА радиотехническими средствами наибольшее распространение получили амплитудные и фазовые методы.



Амплитудный метод основан на сравнении амплитуд сигналов при различных положениях передающей или принимающей антенны. При этом возможны два варианта выполнения угломерных систем: амплитудные пеленгаторы и маяки. В первом случае передающее устройство П располагается на ЛА, а диаграмма направленности наземного приемного устройства П р периодически занимает положение I или II (Рис. 9.7).

Рис. 9.7. Амплитудный метод измерения угловых параметров

Если угол a =0, то уровень сигнала при обоих положениях диаграммы направленности будет одинаковым. Если a ¹0, то амплитуды сигналов будут различны, и по их разности можно вычислить угловое положение ЛА.

В том случае, когда информацией об угловом положении надо располагать на борту ЛА, применяют амплитудный маяк . Для этого на земле устанавливается передатчик, а диаграмма направленности наземной антенны сканирует, периодически занимая положения I и II. Сравнивая амплитуды сигналов, принимаемых бортовым приемником, определяется угловое положение ЛА.

Фазовый метод основан на измерении разности расстояний от ЛА до двух базисных точек О 1 и О 2 (Рис. 9.8).

Рис. 9.8. Фазовый метод определения угловых параметров

При этом расстояния до объекта R 1 и R 2 определяются по разности фаз Dj гармонических колебаний, излучаемых источником, расположенном в пунктах О 1 и О 2 . Косинус направляющего угла q определяется:

где В - расстояние между пунктами О 1 и О 2 .

Примером комплекса внешнетраекторных измерений, применяемом в полигонной практике, может служить система «Трасса» (Рис. 9.10). Данная аппаратура, разработанная и выпускаемая СКБ измерительной аппаратуры НТИИМ, использует координатно-угломеро-базовый принцип.

Она состоит из двух следящих телевизионных теодолитов 1, системы управления 2, системы синхронизации единого времени 3, системы регистрации и обработки информации 4. Система «Трасса» позволяет получать информацию о координатах, скорости, коэффициенте лобового сопротивления, а также наблюдать поведение объекта на экране монитора.

Рис. 9.10. Система внешнетраекторных измерений “Трасса”:

1-следящий телевизионный теодолит; 2-система управления; 3-система синхронизации единого времени; 4-системы регистрации и обработки информации

Основные характеристики системы «Трасса» приведены ниже:

Погрешность измерения угловых координат при угле места до 60 град:

В статике - 15 угл.сек

В динамике - 30 угл.сек,

Максимальные параметры сопровождения объекта

Угловая скорость - 50 град/сек,

Угловое ускорение - 50 град/сек 2 ,

Частота регистрации угловых координат изображений объекта – 25-50 кадров/сек.

Важнейшей задачей внешнебаллистических исследований является определение пространственного местоположения центра масс ЛА, которое однозначно определяется тремя пространственными координатами. При этом в навигации используются понятия поверхностей и линий положения.

Под поверхностью положения понимают геометрическое место точек местоположения ЛА в пространстве, характеризуемое постоянным значением измеряемого навигационного параметра (например, угла места, угла азимута, дальности и т.п.). Под линией положения , понимают пересечение двух поверхностей положения.

Положение точки в пространстве может быть определено пересечением двух линий положения, трех поверхностей положения и линии положения с поверхностью положения.

В соответствии с видом измеряемых параметров различают следующие пять методов определения местоположения ЛА: угломерный, дальномерный, суммарно и разностно-дальномерный и комбинированный.

Угломерный метод основан на одновременном измерении углов визирования ЛА из двух различных точек. Он может быть основан как на оптическом, так и на радиотехническом принципах.

При кинотеодолитном методе поверхностью наложения при a=const является вертикальная плоскость, а поверхностью положения при b=const - круговой конус с вершиной в точке О (Рис. 9.11, а).

Рис. 9.11. Определение координат объекта кинотеодолитным методом,

а) поверхность и линия положения, б) схема определения координат

Пересечение их определяет линию положения, совпадающую с образующей конуса. Следовательно для определения местоположения ЛА необходимо определить координаты точки пересечения двух линий положения OF 1 и OF 2 (Рис. 9.11, б), полученных одновременно с двух измерительных пунктов О 1 и О 2 .

В соответствии с рассматриваемой схемой координаты ЛА определяются по формулам:

где В - расстояние между измерительными пунктами,

R - радиус Земли в данной местности.

При использовании дальномерного метода координаты ЛА определяются точкой пересечения трех сферических поверхностей положения с радиусами, равными дальности D . Однако при этом возникает неопределенность, связанная с тем, что три сферы имеют две точки пересечения, для исключения которой используют дополнительные способы ориентирования.

Разностно и суммарно-дальномерный метод основан на определении разности или суммы дальностей от ЛА до двух измерительных пунктов. В первом случае поверхностью положения является двухполостной гиперболоид и для определения координат объекта необходимо иметь еще одну (ведущую) станцию. Во втором случае поверхность положения имеет вид эллипсоида.

Комбинированный метод обычно используется в радиолокационных системах, когда местоположение ЛА определяется как точка пересечения сферической поверхности положения с радиусом равным дальности (D=const ), конической поверхности положения (b=const ) и вертикальной поверхности положения (a=const ).

Доплеровский метод определения скорости и местоположения ЛА основан на эффекте изменения частоты несущего сигнала, излучаемого передатчиком и воспринимаемого приемным устройством в зависимости от скорости их относительного перемещения:

F д =¦ пр -¦ 0 ,

где F д - частота Доплера,

¦ пр - частота принимаемого сигнала,

¦ 0 - частота передаваемого сигнала.

Измерение частоты Доплера может быть проведено беззапросным или запросным методом. При беззапросном методе радиальная скорость ЛА при длине волны сигнала l 0 , определяется:

V r =F д l 0 ,

при запросном методе:

V r =F д l 0 /2.

Для определения дальности следует проинтегрировать результаты измерения скорости полета за время движения объекта от начальной точки. При расчете координат используются зависимости для суммарно-дальномерных систем.

Схемы определения параметров ЛА, основанные на эффекте Доплера, приведены на рисунке 9.12.

Рис. 9.12. Схема определения координат ЛА доплеровским методом:

а) без ретрансляции сигналов, б) с ретрансляцией сигналов

При проведении внешнетраекторных измерений движения ЛА малых размеров (пуль, артиллерийских и реактивных снарядов) используются доплеровские полигонные радиолокационные станции ДС 104, ДС 204, ДС 304 изготавливаемые НТИИМ.

Рис. 9.13. Доплеровские полигонные радиолокационные станции

ДС 104, ДС 204, ДС 304

Они используют запросный метод и позволяют определять скорости на любом участке траектории, текущие координаты в вертикальной плоскости, вычислять ускорения, числа Маха, коэффициент лобового сопротивления, средние и срединные отклонения начальной скорости в группе выстрелов.

Основные технические характеристики станции ДС 304 следующие:

Минимальный калибр - 5мм,

Диапазон скоростей - 50 – 2000 м/с,

Дальность действия - 50000 м,

Погрешность измерения скорости - 0,1%,

Частота зондирующего сигнала - 10,5 ГГц,

Уровень генерируемой мощности сигнала - 400 мВт.

Радионавигационные методы определения координат, дальномерный метод, линии положения, погрешность дальномерного метода.

Навигация

Ортодромия

Поверхностью положения

Линия положения

Дальномерный метод.

Этот метод основан на измерении расстояния D между точками излучения и приема сигнала по времени его распространения между этими точками.

В радионавигации дальномеры работают с активным ответным сигналом, излучаемым антенной передатчика ответчика (рис. 7.2, а) при приеме запросного сигнала.

Если время распространения сигналов запроса т3 и ответа т0 одинаково, а время формирования ответного сигнала в ответчике пренебрежимо мало, то измеряемая запросчиком (радиодальномером) дальность D = c(т3 + т0)/2. В качестве ответного может быть использован также и отраженный сигнал, что и делается при измерении дальности РЛС или высоты радиовысотомером.

Поверхностью положения дальномерной системы является поверхность шара радиусом D. Линиями положения на фиксированной плоскости либо сфере (например, на поверхности Земли) будут окружности, поэтому иногда дальномерные системы называют круговыми. При этом местоположение объекта определяется как точка пересечения двух линий положения. Так как окружности пересекаются в двух точках (рис. 7.2,6), то возникает двузначность отсчета, для исключения которой применяют дополнительные средства ориентирования, точность которых может быть невысокой, но достаточной для достоверного выбора одной из двух точек пересечения. Поскольку измерение времени задержки сигнала может производиться с малыми погрешностями, дальномерные РНС позволяют найти координаты с высокой точностью. Радиодальномерные методы начали применяться позже угломерных. Первые образцы радиодальномеров, основанные на фазовых измерениях временной задержки, были разработаны в СССР под руководством Л. И. Мандельштама, Н. Д. Папалекси и Е. Я. Щеголева в 1935-1937 гг. Импульсный метод измерения дальности был применен в импульсной РЛС, разработанной в 1936-1937 гг. под руководством Ю. Б. Кобзарева.



Радионавигационные методы определения координат, угломерно-дальномерный метод, линии положения, погрешность угломерно-дальномерного метода.

Навигация - наука о методах и средствах, обеспечивающих вождение подвижных объектов из одной точки пространства в другую по траекториям, которые обусловлены характером за­дачи и условиями ее выполнения.

Ортодромия - дуга большого круга, плоскость которого проходит через центр земного шара и две заданные точ­ки на его поверхности.

В радионавигации при нахождении местоположения объекта вводят понятия радионавигационного параметра, поверхностей и линий положения.

Радионавигационным параметром (РНП) называют физическую величину, непосредственно измеряемую РНС (расстояние, разность или сумма расстояний, угол).

Поверхностью положения считают геометрическое место точек в пространстве, имеющих одно и то же значение РНП.

Линия положения есть линия пересечения-двух поверхностей положения. Местоположение объекта задается пересечением трех поверхностей положения или поверхности и линии положения.

Дальномерный способ определения местоположения и составляющих вектора скорости объектов по радиосигналам космических аппаратов спутниковых радионавигационных систем может быть использован в космической радионавигации и геодезии. Согласно способу принимают N-канальным приемным устройством, установленным на объекте, навигационные радиосигналы спутников, определяют дальности от объектов до каждого спутника путем измерения временных сдвигов кодовых последовательностей, формируемых генераторами спутников относительно кодовой последовательности, формируемой генераторами объекта, а также составляющих вектора скорости путем измерения принимаемых доплеровских сдвигов частоты с использованием систем слежения за несущими. При этом в N-канальном приемном устройстве, один из которых является ведущим, а другие - ведомыми каналами, производят определение разности дальностей между дальностями, измеренными ведомыми приемными устройствами и дальностью, измеренной ведущим приемным устройством, а также определение разностей скоростей изменения дальностей между скоростями изменения дальностей, вычисленными по измерениям доплеровских сдвигов частоты ведомыми приемными устройствами и скоростью изменения дальности, вычисленной по измерению доплеровского сдвига частоты ведущим приемным устройством, затем производят определение двойных разностей дальностей и двойных разностей скоростей изменения дальностей путем взаимного вычитания друг из друга разностей дальностей и разностей скоростей изменения дальностей. Технический результат заключается в повышении точности определения координат местоположения, составляющих вектора скорости определяющегося объекта по навигационным сигналам КА СРНС; и с использованием радиосигналов наземных воздушных источников радиоизлучений, а также с использованием радиоизлучений КА других систем и имитаторов. 4 з.п. ф-лы, 3 ил.

Изобретение относится к области космической радионавигации, геодезии и может быть использовано для определения координат местоположения и составляющих вектора скорости объектов. Известен доплеровский разностно-дальномерный способ определения координат местоположения и составляющих вектора скорости объектов по навигационным радиосигналам космических аппаратов (КА) спутниковых радионавигационных систем (СРНС), основанный на измерениях разностей топоцентрических расстояний между объектом и двумя положениями одного и того же навигационного КА (НКА) в последовательные моменты времени (П.С. Волосов, Ю.С. Дубенко и др. Судовые комплексы спутниковой навигации. Л.: Судостроение, 1976). Практической реализацией известного способа являются российская СРНС "Цикада" и американская СРНС "Транзит" - навигационные системы первого поколения. В нем интегрирование доплеровского смещения частоты принятых за интервал времени T от навигационного искусственного спутника Земли (НИСЗ) радиосигналов позволяет определить число длин волн, укладывающихся в разность расстояний от фазового центра антенны приемного устройства объекта до двух положений НИСЗ (двух положений фазового центра антенны НИСЗ): где t 1 и t 2 - время передачи временных меток НИСЗ; R 1 (t 1) и R 2 (t 2) - расстояния между фазовыми центрами антенн объекта и НИСЗ; c - скорость света; f п - частота принимаемого сигнала; f о - частота опорного сигнала, f п = f и f и +f ио +f тр +f гр +f др, где
f и - частота сигнала, излучаемого НИСЗ;
f и - нестабильность частоты излучаемого сигнала;
f ио,f тр - неизвестные сдвиги частоты, обусловленные распространением сигналов в ионосфере, тропосфере;
f гр - неизвестный сдвиг частоты, обусловленный гравитационными силами;
f др - неизвестные сдвиги частоты, обусловленные другими факторами,
f o = f и f+f o ,
где
f o - известный постоянный сдвиг частоты (частотная подставка);
f - нестабильность частоты опорного сигнала. С учетом изложенного выражение примет вид

Из выражения видно, что интегральный доплеровский сдвиг частоты определяется двумя слагаемыми. Первое слагаемое - погрешности измерений, обусловленные условиями распространения радиоволн, гравитационным полем Земли, нестабильностью частоты излучения опорного генератора и другими факторами. Они войдут в навигационное уравнение как неизвестные. Второе слагаемое является прямым измерением изменения наклонной дальности в длинах волн опорной частоты определяющегося объекта. Ошибка сложения системы слежения за несущей (ССР), которая отсутствует в рассмотренном навигационном уравнении, также входит в ошибку измерения радионавигационного параметра (РНП). Отслеживаемая функция времени - несущая частоты имеет ненулевые производные высокого порядка. Следовательно, помимо случайных ошибок (шумовых) реальный следящий контур с астатизмом конечного порядка будет иметь динамические ошибки, обусловленные наличием производных входного воздействия более высокого порядка, чем порядок астатизма системы. Уменьшение случайной ошибки системы фазовой автоподстройки частоты (ФАПЧ) ССН требует применения более инерционного контура обратной связи (сужение полосы пропускания фильтра низкой частоты), но при этом возрастают динамические ошибки ССР и наоборот. Выражая дальности через координаты прямоугольной геоцентрической системы координат, навигационное уравнение примет вид
,
где
x 1 , y 1 , z 1 , x 2 , y 2 , z 2 - координаты фазового центра антенны спутника в моменты времени t 2 и t 1 соответственно;
x 0 , y 0 , z 0 -неизвестные координаты фазового центра антенны определяющегося объекта. Как видно, три измерения разностей дальностей в четырех последовательных положениях спутника на орбите позволяют определить координаты объекта x 0 , y 0 , z 0 . В процессе измерений необходимо ждать, пока дальность до НИСЗ изменится на достаточную величину. Разностно-дальномерный способ проявляет свои достоинства на таких расстояниях (базах) между положениями НИСЗ на орбите, когда они соизмеримы с расстояниями между НКА и определяющимся объектом. В соответствии с изложенным недостатками известного способа являются
ошибки, обусловленные ССР;
ошибки за счет нестабильности частоты излучения НКА и опорного генератора;
систематические и случайные ошибки;
низкая точность определения координат местоположения и составляющих вектора скорости объектов при использовании НИСЗ на средневысоких и высоких орбитах. Известен также дальномерный способ, который принят в качестве прототипа. Практической реализацией этого способа являются СРНС второго поколения - российская Global Orbiting Navigation Sattellite System (ГЛОНАСС) и американская Global Positioning System (GPS). Геометрическим эквивалентом конечного алгоритма этого способа решения навигационной задачи является построение относительно используемых навигационных искусственных спутников Земли (НИСЗ) совокупности поверхностей положения, точка пересечения которых и является искомым положением объекта (Бортовые устройства спутниковой радионавигации. /Под ред. В.С. Шебшаевича. М.: Транспорт, 1988). Для решения навигационной задачи минимально необходимый объем функциональных зависимостей должен быть равен числу оцениваемых параметров. Определение координат местоположения объекта сводится к решению системы уравнений

где
R 1 , . . . , R 4 - результаты измерений наклонных дальностей, полученные с помощью следящей системы за задержкой (ССЗ);
x, y, z - координаты объекта в геометрической прямоугольной системе координат;
x 1 , y 1 , z 1 .... x 4 , y 4 , z 4 - координаты четырех путников, передаваемые в навигационном сообщении;
R т - разница между истинной дальностью объекта-спутника и измеренной, обусловленной сдвигом шкалы времени объекта относительно шкалы времени НИСЗ;
R 1 ,...,R 4 - погрешности измерений, обусловленные атмосферой, ионосферой, другими факторами. Для определения координат местоположения объекта необходимо, чтобы в поле зрения объекта находились одновременно четыре спутника. В результате решения этой системы уравнений определяются четыре известные: три координаты местоположения объекта (x, y, z) и поправка R т к его шкале времени (поправка к часам). Аналогичным образом, с использованием результатов измерений с помощью ССН, определяются три составляющие вектора скорости и поправки к частоте эталона частоты объекта, используемого для формирования шкалы времени:
,
где
- скорости изменения дальностей (радиальные скорости), измеренные с помощью ССН;
- составляющие вектора скорости объекта;
- составляющие вектора скорости четырех спутников;
- разница между истинной скоростью и измеренной, обусловленная расхождением частот эталонов частоты НИСЗ и объекта;
- погрешности измерений, обусловленные условиями распространения радиоволн и другими факторами. Измерение дальности в аппаратуре объекта осуществляется путем измерения временного интервала между временными отметками принимаемого от спутника кода и местного кода объекта. Эффективность данного метода определяется в основном шумовой погрешностью измерения РНП, поскольку именно шумовая погрешность ограничивает эффект компенсации сильнокоррелированных погрешностей. Для оценки шумовой погрешности используется (Бортовые устройства спутниковой радионавигации. /Под ред. В.С. Шебшаевича. М.: Транспорт, 1988) выражение

где
2 ш - дисперсия шума измерения;
- длительность элемента дальномерного кода;
c/N 0 - отношение мощности сигнала к спектральной плотности мощности шума на входе приемника;
B ССЗ - односторонняя ширина полосы ССЗ;
B ПЧ - односторонняя ширина полосы УПЧ дискриминатора;
K 1 , K 2 - постоянные параметры, зависящие от выбранного технического решения. Измерение доплеровского сдвига частоты основано на измерении приращения дальности на частоте несущей с использованием ССН. Оценка точности измерения приращения дальности определяется выражением для дисперсии фазы 2 ф схемы слежения за несущей, имеющим вид

где
- длина волны несущей;
B ССН - ширина полосы схемы слежения за несущей. Шумовая погрешность измерений приращений дальностей на частоте несущей практически на порядок меньше шумовой погрешности измерений дальностей с использованием дальномерных кодов. Дальномерный способ не позволяет, например, из-за различий в СРНС ГЛОНАСС и GPS совместно их использовать. Таким образом, недостатками известного способа, прототипа, являются
ошибки следящей системы за задержкой от отношения сигнал/шум;
ошибки следящей системы за несущей от отношения сигнал/шум;
ошибки, обусловленные условиями распространения радиоволн в ионосфере, тропосфере и другими факторами;
ошибки, обусловленные сдвигом шкалы времени объекта относительно шкал времени НИСЗ за счет нестабильности частот генераторов спутников и опорного генератора объекта;
невозможность совместного использования источников радиоизлучений систем различного назначения. Для устранения ионосферной задержки в известных способах используется аппаратурная компенсация с помощью двухчастотных измерений и компенсация с помощью поправок, рассчитываемых по априорным данным. Известный способ (прототип) характеризуется следующей совокупностью действий над принимаемыми спутниковыми радионавигационными сигналами:
прием N-канальным приемным устройством двухчастотных радиосигналов N НИСЗ;
определение дальностей от объекта до каждого спутника путем измерения временных сдвигов кодовых последовательностей, формируемых генераторами спутников относительно кодовой последовательности, формируемой генератором объекта;
измерение приращений дальностей путем измерения приращений фаз несущих;
определение координат местоположения объекта;
определение составляющих вектора скорости объекта. Целью изобретения является повышение точности определения координат местоположения, составляющих вектора скорости определяющегося объекта по навигационным радиосигналам КА СРНС и с использованием радиосигналов наземных воздушных источников радиоизлучений, а также с использованием радиоизлучений КА других систем и их имитаторов. Цель достигается тем, что по предлагаемому способу в N-канальном приемном устройстве, один из которых является ведущим, а другие - ведомыми каналами, производят определение разности дальностей между дальностями, измеренными ведомыми приемными устройствами, и дальностью, измеренной ведущим приемным устройством, а также определение разностей скоростей изменения дальностей между скоростями изменения дальностей, вычисленными по измерениям доплеровских сдвигов частоты ведомыми приемными устройствами, и скоростью изменения дальности, вычисленной по измерению доплеровского сдвига частоты ведущим приемным устройством, затем производят определение двойных разностей дальностей и двойных разностей скоростей изменения дальностей путем взаимного вычитания друг из друга разностей дальностей и разностей скоростей изменения дальностей. Дополнительными отличиями предлагаемого способа являются следующие. Ведущим и приемным устройствами определение разностей дальностей производят между объектом и двумя положениями спутников, определяемыми мерным интервалом путем измерения приращений фаз несущих с использованием фазовых автоподстроек частот систем слежения за несущими навигационных радиосигналов спутников. Определение двойных разностей дальностей производят между объектом и двумя положениями спутников, определяемыми мерным интервалом, путем измерения разностей частот Доплера, принятых приемными устройствами с использованием квадратурных фазовых детекторов, умножив их средние значения на мерный интервал. Приемное устройство ведущего канала принимает сигналы имитатора спутниковых сигналов. Выделение сигналов с частотами Доплера производят путем возведения принимаемых сигналов в квадрат с последующим возвратом частот на искомые с использованием делителей частот. Геометрическая интерпретация предлагаемого способа поясняется на примере созвездия четырех КА ГЛОНАСС и одного КА GPS, фиг. 1. Принимаемый приемным устройством навигационный радиосигнал КА GPS является ведущим сигналом, а канал приема приемным устройством сигналов КА ГЛОНАСС - ведомым. Соответственно навигационные сигналы КА ГЛОНАСС, приемное устройство КА являются ведомыми. В соответствии с вышеизложенным

где
- разность измеренных дальностей между каждым ведомым КА ГЛОНАСС - пользователь и между ведущим КА GPS - пользователь с использованием дальномерных кодов;
- двойные разности дальностей. Геометрическая интерпретация определения координат и составляющих вектора скорости по разностям приращений дальностей и двойных разностям приращений, измеренных с использованием приращений фаз несущих, поясняется на примере двух КА: ведущего КА и одного ведомого КА ГЛОНАСС, фиг. 2. Точками t 1 , t * , t 2 обозначены положения НИСЗ на орбите, являющиеся границами отсчетов навигационного параметра (мерный интервал). Разности приращений дальностей запишутся следующим образом соответственно:

Двойные разности приращений дальностей примут вид

Разности дальностей в квадратных скобках системы уравнений (1) проявляют свои достоинства, как это было показано выше на таких расстояниях (базах) между положениями НИСЗ на орбите, когда они соизмеримы с расстоянием между НКА и определяющимся объектом. В нашем примере базы незначительны. Для выполнения этого условия систему уравнений (2) преобразуют в тождественную систему уравнений, у которой данное условие выполняется:

Таким образом, из системы разностей дальностей для орбит НКА с тождественными параметрами орбит для созвездия из 5 НКА один GPS - ведущий, четыре ГЛОНАСС - ведомые. Окончательные системы уравнений для двойных разностей дальностей (1) и для двойных разностей приращений дальностей (3), выраженные через координаты в геометрической прямоугольной системе координат, примут вид
для двойных разностей дальностей
,
Для двойных разностей приращений дальностей
;
;
,
где
- координаты ведомых НИСЗ, передаваемые в навигационных сообщениях в моменты времени t 1 , t 2 соответственно. Аналогично с использованием результатов измерений с помощью ССН определяются составляющие вектора скорости:
;
;
,
где
- составляющие вектора скорости НИСЗ, передаваемые в навигационных сообщениях в моменты времени t 1 , t 2 соответственно. Анализируя системы навигационных уравнений двойных разностей дальностей (4), двойных разностей приращений дальностей (5) и скоростей (6) с использованием ведущего, ведомых радиосигналов НИСЗ и соответствующих приемных устройств, каналов, видим, что в уравнениях компенсируются координаты ведущего НИСЗ GPS, компенсируются также погрешности, обусловленные расхождением шкал времени и частот GPS, ГЛОНАСС относительно шкалы времени, частоты объекта. Если в навигационных уравнениях известного способа присутствуют погрешности, обусловленные ионосферой, тропосферой, то в уравнениях предлагаемого способа с использованием двойных разностей дальностей присутствуют их разности. Для обеспечения высокой точности решения навигационной задачи, обусловленной геометрическим фактором определения положения в пространстве, положение КА в пространстве выбирается таким, при котором один КА находится в зените (обеспечивая высокую точности определения положения по вертикали), а остальные КА - в горизонтальной плоскости в направлениях, отличающихся друг от друга на 120 - 180 o (обеспечивая высокую точность определения положения по горизонтали) в зависимости от количества используемых КА. Таким образом, предлагаемый способ, несмотря, например, на серьезные различия в ГЛОНАСС и GPS, в способах задания эфемерид, в компоновке суперкадров и структур кадров служебной информации, в неидентичности используемых систем отсчета пространственных координат и различии шкал времени, формируемые от различных эталонов частоты и времени, позволяет совместное их использование, не проводя их в требуемое соответствие, т.е. без всяких организационных материальных доработок и доработок математического обеспечения систем. Принимая радионавигационные сигналы КА ГЛОНАСС и GPS параллельно или последовательно, используя мультиплексное приемное устройство или многоканальное, а также беря в одной серии измерений в качестве ведущих КА GPS, а в качестве ведомого КА ГЛОНАСС и наоборот в другой серии, можно определить координаты и составляющие вектора скорости объекта как в координатно-временной системе GPS, так и в координатно-временной системе ГЛОНАСС, не приводя их в соответствие. Совместное использование систем обеспечит определенную универсальность навигационных определений, надежность и достоверную обсервацию за счет сравнения результатов определений по разным системам для выявления случаев нарушения функционирования одной из систем. Под надежностью навигационного обеспечения понимается способность навигационной системы в любой момент времени обеспечить объект информацией для определения местоположения с точностью, гарантированной для рабочей зоны. Под достоверностью понимается способность навигационной системы выявлять отклонения в своем функционировании, приводящие к ухудшению точности определения координат и составляющих вектора скорости объекта за пределы заданных допустимых значений. Если система навигационных уравнений двойных разностей предлагаемого способа с использованием измерений с помощью дальномерных кодов (1) является по сути системой уравнений разностей дальностей, то система навигационных уравнений двойных разностей приращений дальностей, измеренных с помощью приращений фаз несущих на мерном интервале (2), является системой уравнений двойных разностей дальностей и также позволяет решить навигационную задачу - определить координаты местоположения и составляющие вектора скорости объекта. Поскольку, как это было показано выше, точность измерений двойных разностей приращений фаз на несущих частотах на порядок выше точности измерений разностей временных сдвигов кодовых последовательностей, то и точность решения навигационной задачи с использованием приращений фаз также выше точности решения с использованием разностей дальностей. В целях дальнейшего повышения точности решения навигационной задачи с использованием приращений фаз на несущих частотах за счет исключений из измерений погрешности, обусловленной ССН, двойные разности приращений дальностей производятся путем выделения из принятых сигналов с частотами, равными разностям частот Доплера, с использованием квадратурных фазовых детекторов, на первые выходы которых поступают сигнал ведущего, а на вторые входы - сигналы ведомых приемных устройств, затем производятся определение разностей приращений фаз путем умножения средних значений разностей частот Доплера на мерный интервал и определения двойных разностей приращений фаз путем их взаимного вычитания. Изложенное соответствует аппаратурной реализации, блок-схема которой приведена на фиг. 3. Выделение сигналов с частотами Доплера при приеме фазомодулированных сигналов с подавленными несущими производится путем возведения их в квадрат и фильтрации с последующим возвратом частот на искомые с использованием делителей частот. Сигналы с выходов устройств свертки, которые поступают на системы ФАПЧ ССН приемных устройств фиг. 3, в режиме синхронизма по задержкам дальномерных кодов являются значительно узкополосными сигналами - восстановленные несущие, промодулированные цифровой информацией. Диапазоны изменения значений несущих определяются в основном доплеровским смещением ( 50 кГц на частотах КА GPS, ГЛОНАСС), а ширина спектра сигнала - спектром цифровой информации ( 100 Гц). Сигналы ФАПЧ могут отслеживать сигналы, соответствующие только одной из двух боковых полос, и, следовательно, обладают энергетическими потерями, равными 3 дБ. Поэтому подключение устройств выделения из принятых навигационных сигналов, равных разностям частот Доплера предлагаемого способа фиг. 3, исключающих вторые боковые полосы, не вносит дополнительные энергетические потери. Принятые и преобразованные спутниковые навигационные радиосигналы, поступающие на квадратурные фазовые детекторы, несут уже в себе сдвиги частот, обусловленные нестабильностями генераторов КА, объекта, обусловленные условиями распространения радиоволн (ионосфера, тропосфера), сдвиги, обусловленные приемными трактами и другими факторами. Поэтому в процессе выделений колебаний с частотами, равными разностям частот Доплера предлагаемого способа, перечисленные частотные отклонения частично компенсируют друг друга. И уже при тройных разностях вклад их в точность навигационных определений будет незначительным. При использовании для решений навигационной задачи приращения фаз влияния приращений фаз на точность за счет ионосферы, тропосферы для крайних точек мерного интервала отличаются мало и при образовании вторых разностей практически устраняются. Особым отличительным признаком предлагаемого способа является то, что при измерениях разностей приращений фаз с использованием колебаний, равных разностям частот Доплера, в качестве ведущего сигнала можно использовать сигнал любого источника излучения: наземного, воздушного базирования или излучения КА других систем. В этом случае основное требование к приемному устройству определяющегося объекта это возможность принять сигнал и преобразовать его таким образом, чтобы он обеспечил работу блока квадратурных фазовых детекторов. Причем координаты источников излучения, их временные системы, нестабильности частот и приращения частот за счет распространения радиоволн знать не требуется. Они компенсируются в процессе навигационных измерений. Самым оптимальным вариантов аппаратурной реализации предлагаемого способа является вариант, когда в качестве ведущего сигнала приемного устройства объекта используются сигналы несущих, промодулированные дальномерными кодами имитаторов. Имитаторы позволяют оптимизировать скорость изменения частот конкретно для каждого типа навигационных систем и тем самым обеспечить их оптимальную работу с точки зрения получения потенциально возможной точности определения координат местоположения и составляющие вектора скорости объекта. Отличительные признаки предложенного способа:
прием N-канальным приемным устройством навигационных радиосигналов N спутников, один из каналов которого является ведущим, а другие - ведомыми;
определение разностей приращений дальностей и разностей дальностей путем вычитания из измеренных приращений фаз несущих и временных сдвигов кодовых последовательностей ведомыми приемными устройствами приращения фазы несущих и временного сдвига кодовой последовательности, измеренных ведущим приемным устройством;
определение двойных разностей дальностей приращений дальностей и дальностей путем взаимного вычитания разностей двойных разностей приращений фаз несущих и разностей временных сдвигов кодовых последовательностей в последовательности, определяемой геометрическим фактором определения положения в пространстве;
использование разностей двойных разностей приращений фаз несущих для определения координат и составляющих вектора скорости объекта;
измерение двойных разностей приращений дальностей путем выделения сигналов с частотами, равными разностям частот Доплера, принятых ведущим и каждым ведомым каналами приемного устройства с использованием квадратурных фазовых детекторов, на первые входы которых поступают сигналы ведущего канала, а на вторые входы - сигналы ведомых, и умножением их средних значений на мерный интервал;
прием ведущим каналом приемного устройства радиосигналов наземных, воздушных источников радиоизлучений и радиоизлучения космических аппаратов других систем;
использование ведущими каналами приемного устройства в качестве сигнала имитаторов;
выделение сигналов с частотами Доплера при приеме фазомоделированных сигналов с подавленными несущими путем возведения их в квадрат и фильтрации с последующим возвратом частот на искомые с использованием делителей частот. Таким образом, предложенный способ определения координат местоположения и составляющих вектора скорости объектов по радиосигналам КА СРНС обладает новизной, существенными отличиями и дает при использовании положительный эффект, заключающийся в повышении точности, надежности и достоверности навигационных определений спутниковых и наземных радионавигационных систем.

Публикации по теме